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Abstract

Much of our lives are spent in unconstrained rest states, yet cognitive brain processes are primarily investigated
using task-constrained states. It may be possible to utilize the insights gained from experimental control of task
processes as reference points for investigating unconstrained rest. To facilitate comparison of rest and task func-
tional magnetic resonance imaging data, we focused on activation amplitude patterns, commonly used for task
but not rest analyses. During rest, we identified spontaneous changes in temporally extended whole-brain
activation-pattern states. This revealed a hierarchical organization of rest states. The top consisted of two com-
peting states consistent with previously identified ‘‘task-positive’’ and ‘‘task-negative’’ activation patterns.
These states were composed of more specific states that repeated over time and across individuals. Contrasting
with the view that rest consists of only task-negative states, task-positive states occurred 40% of the time while
individuals ‘‘rested,’’ suggesting task-focused activity may occur during rest. Together our results suggest that
brain activation dynamics form a general hierarchy across task and rest, with a small number of dominant general
states reflecting basic functional modes and a variety of specific states potentially reflecting a wide variety of
cognitive processes.
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Introduction

The brain is a distributed information-processing system
with rich spatiotemporal dynamics underlying complex

cognitive dynamics. A major goal of cognitive neuroscience
is to create a mapping between these two forms of dynamics
to better understand the neural basis of cognition. Recent in-
sights in human neuroimaging research have improved this
mapping by considering activity in more than one spatial loca-
tion at a time. These approaches include multivariate pattern
analysis (MVPA) of brain activity patterns corresponding to
cognitive task events (Haxby et al., 2014; Haynes, 2015), as
well as functional connectivity (FC) analysis of brain network
dynamics during rest and task (Fox and Raichle, 2007; Hutch-
ison et al., 2013; Smith et al., 2011). Building on these ad-
vances, in this study, we use what we term ‘‘dynamic
MVPA’’ (dMVPA)—MVPA applied to the temporal evolu-
tion of brain processes (Anderson et al., 2012; Betzel et al.,
2012; King and Dehaene, 2014; Yuan et al., 2012)—with
functional magnetic resonance imaging (fMRI) to characterize
the repertoire of brain states across a variety of resting and task
cognitive states.

In particular, we used a state space characterization of dynam-
ics previously used to gain insight into other real-world complex
systems (Furusawa and Kaneko, 2012; Junejo, 2010). This in-
volves conceptualizing each whole-brain image in time as a sin-
gle point in a high-dimensional feature space. Brain state
changes are thus equivalent to movement through that state
space. We primarily utilize distance between these points in
state space, using a standard distance metric (spatial pattern cor-
relations) between time points to temporally cluster them into
brain states extending through time. More generally, we are pro-
posing the question: how do brain states (whole-brain images)
evolve over time? The unique difference here in our state
space characterization is the focus on shifts in whole-brain acti-
vation patterns across time, in contrast to the sliding-window dy-
namic FC approaches (Allen et al., 2014; Hutchison et al., 2013),
allowing us to observe movement across state space at higher
temporal precision (per time point). Here, we map cognitive pro-
cesses onto brain states in context of a state space to apply meth-
ods from dynamical systems to investigate the characteristics of
such brain states (Motter, 2015). In this study, we define a brain
state as a whole-brain activation pattern at specific point in time
and state transitions as changes in activation patterns across
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time. We can characterize the brain states as ‘‘attractor states’’
based on the cognitive functions and/or behavioral outputs of
these states or groups of similar-function brain states as ‘‘attrac-
tor state clusters/networks’’ by analyzing the topography of the
state space (Motter, 2015). We perform further analyses using
graph theoretical formulations. Relative to classical clustering
approaches, graph theoretical community detection algorithms
can better assign patterns near the edges of a cluster (Newman
and Girvan, 2004). This can provide a more comprehensive
characterization of a state space’s large-scale organization.

We propose the use of the term dMVPA given the similarity
of this approach to existing approaches in fMRI FC dynamics
(Allen et al., 2014; Hutchison et al., 2013) and in MVPA-
based magneto-/electro- encephalogram (M/EEG) methodolo-
gies (Khanna et al., 2015; King and Dehaene, 2014). However,
whereas standard MVPA uses supervised machine learning
(Haynes, 2015) to classify activation patterns during experi-
mentally induced cognitive events, dMVPA can be applied
to the moment-by-moment temporal evolution of brain states
to characterize spontaneous cognitive events. Furthermore,
identifying whole-brain activation pattern states [rather than
FC/temporal covariance patterns (Smith et al., 2009, 2012)] fa-
cilitates the functional interpretability of those states. This is
due to whole-brain fMRI activation patterns being more di-
rectly comparable to the vast fMRI task activation literature,
which associates cognitive task manipulations with whole-
brain spatial activation maps (Laird et al., 2009; Yarkoni
et al., 2011). Several recent studies have focused on resting-
state activation patterns (Liu and Duyn, 2013; Liu et al.,
2013). Specifically, these studies applied k-means clustering
to selectively average fMRI time points to identify spatially
averaged coactivation patterns. However, these studies fo-
cused on relating these patterns to resting-state networks,
rather than task activations. In this study, we compare resting-
state activation patterns to specific task activation maps—po-
tentially involving coactivation of multiple resting-state net-
works—to determine whether resting states traverse a
similar state space as task states.

We utilize rest data, in part, given the possibility that many
brain states are visited in this unconstrained ‘‘task-free’’ con-
text (Fox and Raichle, 2007). This allowed us to obtain a
broad sampling of possible brain states across many (N = 97)
individuals. We also supplemented this broad repertoire of
spontaneous states with experimentally controlled states iden-
tified from a variety of tasks involving distinct cognitive func-
tions. We hypothesized that activation-pattern states would
overlap between unconstrained rest and task performance,
reflecting a common brain activation-pattern state space
(He, 2013) between these two highly distinct levels of overt
behavior. Conceptualizing activation patterns as brain states
puts rest and task in a common conceptual framework, likely
facilitating insights into general neural activation-pattern dy-
namics across a wide variety of mental states.

Materials and Methods

Participants

Data were collected as part of the Washington University-
Minnesota Consortium Human Connectome Project (Van
Essen et al., 2013). The participants were recruited from
the Washington University campus and surrounding area.
All participants supplied informed consent. The data were

from the ‘‘500 Subjects’’ public data release. We used data
from the ‘‘100 Unrelated Subjects’’ set as we wanted a sam-
ple representative of the general population (excluding fam-
ily relations).

We used resting-state fMRI and task-state fMRI data from
100 subjects, with 3 outlier subjects removed for a subset of
analyses. The resting-state dataset consisted of four separate
runs, each spanning 14.4 min in length. Analyses were per-
formed separately for each rest run. The task data involved
seven diverse tasks (Barch et al., 2013). These seven tasks
were selected to tap into different cognitive processes as
well as the different neural circuitry that supports those func-
tions. The tasks were related to emotion perception, reward
learning, language processing, motor responses, relational
reasoning, social cognition, and working memory.

MRI parameters

Whole-brain echo-planar scans were acquired with a 32
channel head coil on a modified 3T Siemens Skyra with TR =
720 ms, TE = 33.1 ms, flip angle = 52�, BW = 2290 Hz/Px, in-
plane FOV = 208 · 180 mm, 72 slices, 2.0 mm isotropic vox-
els, with a multiband acceleration factor of 8 (Uğurbil et al.,
2013). Data were collected across 2 days. On each day,
28 min of rest (eyes open with fixation) fMRI data were col-
lected across two runs (56 min total), followed by 30 min of
task fMRI data collection (60 min total). Each of the seven
tasks was completed over two consecutive fMRI runs.
Details regarding the resting-state data collection for this
dataset can be found elsewhere (Smith et al., 2013), as
well as details about the tasks (Barch et al., 2013).

fMRI preprocessing

We used a minimally preprocessed version of the data,
which was the result of standard procedures, including spa-
tial normalization to a standard template, motion correction,
and intensity normalization. These steps have been described
previously (Glasser et al., 2013). We performed analyses on
the volume version of these minimally preprocessed data
using AFNI (Cox, 1996). We removed variables of no inter-
est from the time series using linear regression, including
motion estimates, ventricle and white matter signals, as
well as their derivatives. Ventricle, white matter, gray mat-
ter, and anatomical structures were identified for each subject
using FreeSurfer (Fischl et al., 2002, 2004). A linear trend
was removed from the signal of each time series, and the
data were spatially smoothed (FWHM = 4 mm). Resting
fMRI data are also typically temporally filtered to isolate
the low frequency component of the time series. However,
we did not apply a temporal filter to the data due to the pos-
sibility of relatively rapid brain state transitions. Further data
analysis was completed by sampling from a set of 264 re-
gions to capture and explore large-scale regional and system-
level questions (Power et al., 2011).

Brain state identification

We conceptualized time in terms of a weighted graph,
with each time point as a graph node and edges as the simi-
larities of whole-brain spatial activation patterns at those
time points. Activation pattern similarity (similarity of whole-
brain activation patterns from one time point to another)
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was calculated using Pearson correlation. Activation pattern
similarity is nearly identical to FC: correlations are per-
formed on the other dimension (FC—correlations between
time-series across regions; activation pattern similarity—
correlations between spatial pattern across all regions be-
tween time points). Pearson correlations were used given
that it is a well-established distance measure (Cha, 2007),
is invariant to scale changes, and can be conveniently con-
ceptualized as (the square root of) linear variance explained.
These correlation-based associations were summarized in a
temporal similarity matrix (Fig. 1C), consisting of all pair-
wise similarities among time points.

Time points with strong edges between them were consid-
ered as instances of the same brain state. Clusters of similar

time points were identified using the Infomap community de-
tection algorithm (Bohlin et al., 2014; Rosvall and Berg-
strom, 2011; Rosvall et al., 2009). The Infomap approach
is largely based on the Louvain method and optimizes the
‘‘map equation’’ [see www.mapequation.org/code.html
(Rosvall et al., 2009) for more details]. Specifically, the al-
gorithm maps the trajectory of a random walker moving
through a network to find underlying community structure. In
addition, there is an iterative search process step that starts
the random walker at different locations in the network to
identify the optimal community structure across all iterations
(in our study, we set the number of iterations to 100 for
computational tractability). Infomap community detection
algorithm was first applied to each subject’s initial resting-

FIG. 1. Brain state identi-
fication methods flowchart.
Summary of the analysis
pipeline for determining ac-
tivation pattern states. For
each subject’s data (A), pair-
wise correlations were com-
puted between all activation
patterns (B), resulting in a
temporal similarity matrix
(C). Infomap community de-
tection algorithm was applied
to this temporal similarity
matrix, clustering similar
time points into the same
unique state (D). State proto-
types were calculated by av-
eraging activations across all
time points within the same
community (E). Group level
analyses were conducted by
concatenating all individual
subject state prototypes into
one data matrix (F) and per-
forming the same analysis
steps (B–E) this group-level
matrix, shown in (G) group-
level state similarity matrix,
(I) Infomap community de-
tection algorithm solution at
the group-level, and (H)
group-level activation pattern
states.
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state fMRI run (14.4 min, 1200 time points). Given the likely
presence of noise, we thresholded the temporal similarity
matrix at thresholds from 1% to 50% connection density (at
1% increments), before the application of Infomap. For each
iteration of the connection density thresholding, we applied
the Infomap algorithm to assign each time point to unique
communities. Modularity was calculated to assess the quality
of Infomap’s assignment of time points to communities
(Blondel et al., 2008; Rubinov and Sporns, 2011). A consen-
sus clustering approach (Lancichinetti and Fortunato, 2012)
was applied to derive a final set of community assignment for
an individual subject’s resting-state run (Fig. 1D). Specifi-
cally, consensus clustering converges on a stable community
assignment by identifying common community features
across each of the 50 Infomap assignments, weighted by their
respective modularity scores. This step was performed on a
per-subject basis to identify subject-specific community as-
signments or brain states. This produced on average 4 unique
brain states (graph communities) per subject, with a total of
412 brain states across 98 subjects. Note that 2 of the 100
subjects were excluded because the Infomap algorithm
returned more than three standard deviations above the aver-
age number of states per subject. We reduced the many time
points contributing to each brain state to a single ‘‘prototype’’
vector for each brain state via averaging (Fig. 1E).

We also tested two other popular clustering approaches, k-
means clustering and hierarchical clustering, on a single sub-
ject (to avoid potential overfitting of a specific method on the
full dataset). We found that clustering solutions were quite
similar to one another, with the Infomap solution performing
slightly better based on modularity scores (see Supplemen-
tary Fig. S3 for details; Supplementary Data are available
online at www.liebertpub.com/brain).

We next conducted a group-level analysis with the goal of
identifying shared brain states across subjects (Fig. 1F–I).
This involved first computing an adjacency matrix based
on the similarities among the brain-state prototypes across
all subjects (Fig. 1G). We then applied the Infomap algo-
rithm to that matrix (Fig. 1H) with no thresholding to pro-
duce a group-level brain state solution (Fig. 1I). Later, we
tested for the presence of a hierarchy of brain states, with
the no-threshold (group-level) solution being the top of the
hierarchy. We produced lower levels of the hierarchy by re-
running the algorithm (independent of the previous level)
using a series of different density thresholds. We began
with 100% density (no threshold), going down by 10% incre-
ments until the 10% density level. In contrast to the subject-
level analysis, no consensus approach was applied across the
density thresholds. Each density threshold was analyzed in-
dependently, since reducing the density eliminates weaker
connections and allows for better isolation and separation
of the communities (Power et al., 2011).

Assessing the amount of time spent in each brain state

For resting-state data, each time point of an individual’s
whole-brain activation was categorized as State A or State
B, depending on its similarity to the two-state solution
based on the group-level Infomap result. The estimated
amount of time spent in each of the two states was then cal-
culated based on the two-state clustering for each individual
subject. We then trained a classifier using support vector ma-

chines (SVM) to be able to decode whether a subject was in
State A or State B at a given time point. Specifically, the
SVM classifier was trained on rest runs 2–4 and validated
by testing on rest run 1. We then classified every time
point for each subject during task sessions. Specifically, the
SVM classifier was trained on rest runs 2–4 and validated
by testing on rest run 1 before classification of task-state
data (for each task separately). SVM training and task-state
data classification were all performed within subject (i.e.,
SVM trained on subject 1’s resting-state data before classifi-
cation of subject 1’s task data). Due to this, one additional
subject (total N = 97) was removed from the analysis because
the subject’s resting-state data only exhibited one unique
state after group-level clustering remapping. Note that vali-
dation with rest run 1 data was based on above-chance clas-
sification accuracy, using the group-level Infomap clustering
labels as the ground truth. The two-state classification results
were used to determine the amount spent in each state for
each of the seven tasks.

Neurosynth state decoding

Brain states were decoded using the Neurosynth decoder
tool (Yarkoni et al., 2011). Neurosynth is a meta-analytical
tool that contains a database with brain activation patterns
and peak signal coordinates paired with the associated cogni-
tive terms from the fMRI scientific literature. The decoder
function takes in our voxelwise representation of brain states,
cross-references with the database, and returns a list of cogni-
tive terms each paired with a correlation score indicating how
well each brain state is associated with each cognitive term.
The decoder returned a list of *3406 cognitive terms and
their correlation values with the tested brain state. Of the
top 50 highest correlated terms, all anatomical terms, redun-
dant terms, nonsensical terms (i.e., ‘‘cortexmpfc,’’ ‘‘net-
workdmn’’), and methodological terms were excluded from
the list. The remaining terms were visualized as word clouds
(Fig. 6) and the relative font sizes of each term were deter-
mined by the correlation scores. We also sought to validate
the results returned by Neurosynth by running a series of per-
mutation tests for each brain state (Supplementary Fig. S2).

Results

Identifying multivariate brain activation states

We hypothesized that whole-brain fMRI activation pat-
terns would consist of discrete states—configuration patterns
that extend (and repeat) through time. To test this possibility,
we clustered whole-brain resting-state fMRI activations in
time. A standard set of functionally defined regions (Power
et al., 2011) was used for computational tractability as well
as for the previously-identified functional system assign-
ments (Fig. 2D). Spatial correlations were used as a similar-
ity/distance measure across individual time points, with brain
states defined as temporal clusters of similar activation pat-
terns (Fig. 2A).

Brain states were identified first at the individual subject
level. Of the 100 subjects, 2 subjects were excluded from sub-
sequent analyses because the clustering algorithm returned
more than three standard deviations above the average number
of states per subject. On average, 4 unique brain states were
identified for each subject for a total of 412 unique brain
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FIG. 2. The repertoire of brain states based on resting-state fMRI. Each individual’s prototypical brain states were corre-
lated and clustered using the same Infomap algorithm. (A) An example of individual time point similarity based on spatial
correlations. 250 time points from a single subject (HCP subject 100408, time points 100:350) are shown for illustration. The
across-subject clustering result (mapped back to this subject’s data) is shown in blue and yellow. (B) Brain state prototypes
for State A and State B, averaged across all activation vectors across all subjects. The two-state results replicated across all
four of the rest runs (results from two runs are shown in B). (C) Voxelwise representations of State A and State B. Note that
State B involves activation of the default-mode network as well as the tan/salmon-colored portion of the frontoparietal net-
work in (D). (D) Functionally defined set of 264 regions and the associated functional network assignments. fMRI, functional
magnetic resonance imaging. Color images available online at www.liebertpub.com/brain
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state prototypes across the remaining 98 subjects. These 412
brain states were reclustered in a group-level analysis. The
same processing steps performed at the individual subject
level were applied at the group level for determining group-
level brain states (see Materials and Methods section for
details). Note, while the brain states identified in Figure 2
resemble resting-state FC networks, the brain states were
derived from activation pattern correlations, which is orthog-
onal to FC calculations.

At the group level, two brain states were identified, which we
labeled ‘‘State A’’ and ‘‘State B’’ (Fig. 2B, C). The states were
summarized by averaging all prototypes with the same cluster-
ing label and visualized in 264 regions of interest space
(Fig. 2B) and in voxel space (Fig. 2C). An example subject’s
temporal similarity matrix along with the group-level clustering
solution is illustrated in Figure 1A. Periods of highly similar ac-
tivation patterns can be observed by the blocked structure on
the diagonal of the temporal similarity matrix, which are
grouped as the same state in the clustering solution. We repli-
cated the current findings using the same approach for the
remaining three rest runs and found similar results (second
run shown in Fig. 2B). Specifically, State A identified in any
given rest run was highly correlated on average with State A
identified in other rest runs: rank correlation rho = 0.92
( p < 0.0001 for all pairwise comparisons). This was also the
case for State B being correlated with State B identified in
other rest runs: average rank correlation rho = 0.91
( p < 0.0001 for all pairwise comparisons). In addition, State
A and State B were highly anticorrelated at rho =�0.97 on av-
erage ( p < 0.0001 for all pairwise comparisons). Note that the
clustering approach used to identify distinct activation states
prioritizes identification of maximally distinct (e.g., anticorre-
lated) states. To confirm the statistical significance of the ob-
served anticorrelation despite this prioritization of maximally
distinct states, we performed a permutation test that shuffled
State A and B labels within subject and found that the observed
result was p < 0.0001 relative to chance clustering of time
points (Supplementary Fig. S1; Supplementary Data are avail-
able online at www.liebertpub.com/brain).

Functionally, State A is highly similar to observed ‘‘task-
positive’’ activation patterns reported in the literature (Cor-
betta and Shulman, 2002; Fox et al., 2005; Power et al.,
2011). This activation pattern includes active regions in
many task-related functional networks, such as the dorsal
and ventral attention networks, salience network, and
sensory-motor networks (visual, auditory, motor). Con-
versely, State B is likely to be a ‘‘task-negative’’ state,
given the strong activation of the default-mode network
(DMN) (Fox et al., 2005; Uddin et al., 2009) (along with a
portion of the frontoparietal cognitive control network
[FPN]). Note, however, that despite using ‘‘task-negative’’
data (i.e., fMRI data collected during rest), we were able
to extract both task-positive and task-negative states.

The relationship between spatial activation patterns
(spatial correlations) and FC (temporal correlations)

Using resting-state data, we identified a ‘‘task-positive’’
State A and a ‘‘task-negative’’ State B with patterns observed
in both the task activation fMRI literature and the resting-state
FC literature. The use of resting-state data both here and in the
resting-state FC literature raises the possibility that the effects

observed here somehow recapitulate those same resting-state
results by different means. Notably, however, the approach
used here was quite distinct from FC analyses, as FC analyses
used temporal correlations, while the activation-pattern state
approach used spatial correlations. Nonetheless, we next
sought to verify that the activation-pattern approach produced
analytically distinct results from resting-state FC.

If the FC approach were somehow analytically equivalent
to activation-pattern state approach, then we would expect
that calculating FC in each of the activation-pattern states
would yield distinct FC patterns. We therefore analyzed
resting-state FC patterns, including only time points identi-
fied as either State A or, separately, State B. Comparing be-
tween the FC patterns calculated by averaging across all
subjects (Fig. 3), we found that the overall resting-state FC
patterns (calculated across the entire rest run, separately for
State A time points and State B time points) correlated
with State A FC at r = 0.948 and State B FC at r = 0.951.
This was inconsistent with patterns identified using resting-
state FC (temporal correlations) being mathematically equiv-
alent to activation-pattern states (spatial correlations). In ad-
dition, to test whether results were consistent across subjects,
FC comparisons were also performed for each subject sepa-
rately. We then performed random-effects statistical analy-
ses to test for cross-subject consistency. The overall
resting-state FC pattern correlated with State A FC on aver-
age at r = 0.55 [t(96) = 42.4, p < 0.0001] and State B FC on
average at r = 0.54 [t(96) = 49.1, p < 0.0001]. Note that we
calculated the overall resting-state FC pattern based on a sep-
arate run (e.g., run 2 when comparing to run 1’s State A FC)
to remove circularity from the analysis (Kriegeskorte et al.,
2009). All noncircular combinations (between the first and
second resting-state run) were computed and the reported re-
sults are based on averages across these comparisons.

The strong correlation between the individual states’ FC
and overall rest FC suggests that resting-state FC architecture
remains consistent across distinct activation brain states. Fur-
ther supporting this conclusion, cross-subject averaged State
A FC correlated with cross-subject averaged State B FC at
r = 0.951. This was also the case when computed based on av-
eraging within-subject comparisons: r = 0.49 [t(96) = 48.6,
p < 0.0001], suggesting cross-subject consistency. Note that
this was calculated by comparing across separate rest runs,
as with the overall resting-state FC pattern comparisons
above. The resulting average similarity is very high relative
to chance, but also in contrast to the strong anticorrelation
(rho =�0.97) between State A and State B activation patterns.
This suggests that whole-brain activation pattern dynamics are
unique and largely independent of FC dynamics.

Functional relevance of the two states

Identifying a task-positive State A when using ‘‘task-
negative’’ resting-state data suggests that subjects may have
been visiting a common set of states during rest and task. To bet-
ter test this hypothesis, we directly compared the identified State
A and State B activation patterns with rest and task data. This in-
volved testing correlations between the two states’ average acti-
vation patterns (Fig. 2B) and every individual time point’s
whole-brain activation pattern. This was done for all subjects
individually for resting state and for each of the seven tasks
(Fig. 4B shows correlation results for the reasoning task).
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For resting-state data, no cross-subject temporal patterns
were observed (Fig. 4A), as expected. On average, subjects
were in State A only 39% of the time, and in State B 61%
of the time. In contrast, for each of the seven tasks
(Table 1), we found that every subject was in State A most
of the time during task blocks and in State B mainly during
the intertask rest periods (Fig. 4B), with the exception of the
language task. On average, subjects were in State A 54%
(State B 46%) of the time during task blocks and in State
A 41% (State B 59%) of the time during intertask rest peri-
ods. In addition, subjects tended to stay in State A longer for
tasks that were likely more challenging or cognitively de-
manding. For instance, subjects were in State A 59% (State
B 41%) for the reasoning task, but only in State A 53%
(State B 47%) for the motor task. This suggests that State
A is not only relevant to rest data (the data used to derive
it) but also likely to be the same high-level state required
for performing various active task demands.

Hierarchical organization of brain states

Despite the previous analyses identifying two primary brain
activation-pattern states, it is implausible for there to be only

two brain states, given the wide variety of possible tasks that
brains perform. Furthermore, the vast fMRI literature indicates
that each active task (cognitive state) has a unique activation
pattern, despite an overarching ‘‘task-positive’’ activation pat-
tern for externally oriented and cognitive control tasks (Cor-
betta and Shulman, 2002; Fox et al., 2005; Power et al.,
2011). We therefore hypothesized that brain states are orga-
nized in the form of a hierarchy, with State A and State B at
the top level and more specific task states at lower levels. To
identify these lower-level task-specific states, the two top-
level states were broken down into more states by reducing
the connection density of the adjacency matrix before applying
Infomap clustering (from 100% to 20% density at decreasing
increments of 20%) at the group-level (i.e., after identifying
subject-specific brain states). Reducing the connection density
of the temporal similarity matrix removes weaker graph edges
(lower correlations) between the group state prototypes and in-
creases separation of similar spatial activation patterns. The
task-positive State A divides into two states early in the hierar-
chy (60% density), shown by the red links between the levels
of the hierarchy (Fig. 5). The task-negative State B splits into
multiple states at the lowest level of the hierarchy (20% densi-
ty), shown with blue links between the levels of the hierarchy.

FIG. 3. Independence of activa-
tion state dynamics from FC state
dynamics. The FC matrices for
resting-state (over the entire rest
run), State A (just the time points
labeled state A), and State B (just
the time points labeled state B) are
pairwise correlated with each other
for each subject. Averaged FC ma-
trices and correlation values across
subjects are shown here. These re-
sults suggest that the whole-brain
multivariate activation states inves-
tigated here are independent of FC
dynamics. FC, functional connec-
tivity. Color images available online
at www.liebertpub.com/brain
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Decoding brain states using Neurosynth

We next sought to take advantage of the vast fMRI task ac-
tivation literature to decode the identified resting-state brain
states, identifying possible cognitive processes occurring during
rest. This meta-analytic decoding approach also allowed us to
test the hypothesis that State A and State B are likely to be gen-
eral states governing basic modes of cognition, while the lower
level states (12 states at 20% density) are likely more function-
ally specific. Note, however, that it will be critical for future re-
search to verify that the mental states predicted from brain
activation-pattern states are actually present as predicted.

To examine the specific cognitive functions associated with
each state at the 100% and 20% density levels, each of the 14
states (State A, State B, and the 12 states at 20%) were decoded

using the Neurosynth decoder function and visualized as word
clouds (Poldrack et al., 2009). The word clouds for State A and
State B (Fig. 6A) were consistent with our previous interpre-
tation of a ‘‘task-positive’’ state and a ‘‘task-negative’’ state,
respectively. In addition, the cognitive terms for each of the
lower level states (Fig. 6B, C and Supplementary Fig. S2)
are quite distinct from one another, despite certain terms re-
peating across states (‘‘healthy’’ for State B2, B5, B6; see
Supplementary Fig. S2). State A branched into two lower-
level states that shared similar cognitive terms. In contrast,
State B is subdivided into 10 lower-level states that include
more diverse cognitive terms spanning multiple functional do-
mains not seen in State B word cloud.

We validated that the meta-analytic decoding results were
unlikely to have occurred by chance by running a permutation

FIG. 4. Functional relevance of the two main states. The two brain states observed at the group level (Fig. 2B) are corre-
lated with each subject’s rest and task data (separately for each time point). No discernable temporal organization of State A
and State B is observed in resting-state data across all 100 subjects (A). Evidence of State A during rest may suggest subjects
are performing covert tasks during rest. Clear structure is seen when correlated with activity during the reasoning task (B). All
subjects consistently enter State A when entering task blocks (in red), and enter State B when entering intertask rest periods
(in blue). Color images available online at www.liebertpub.com/brain
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test for each of the brain states (Supplementary Fig. S2). In
brief, this involved shuffling terms across activation-pattern
states, creating a nonparametric null distribution for each
term. We found that all of the cognitive terms of interest
depicted in State A and State B word clouds were signifi-
cantly different when compared against the permutation
tests’ null distributions ( p < 0.001). In addition, all cognitive
terms for State A1, A2, B1, and B2 were significantly differ-
ent ( p < 0.05) when compared to the null distributions. Note
that the permutation tests controlled for multiple compari-
sons (family-wise error), since all 3406 term comparisons
were included in each permutation. The remaining States
B3–B10 (Fig. 6B, in grey) did not survive the permutation
tests (at p < 0.05). Together, these results support the effec-
tiveness of Neurosynth decoding of spontaneous activation
states and are consistent with the identified brain states cor-
responding with distinct mental/cognitive states.

Discussion

By characterizing moment-to-moment activation patterns
in a high-dimensional state space, we observed a hierarchical
organization of functional brain states. Two domain-general
states (State A and State B) occupy the highest tier of that hi-
erarchy. These two states can be further subdivided into
functionally specific substates. As expected, subjects spent
a majority of time in State B during resting-state runs,
which matches the activation pattern commonly observed
to be more active during rest than during most tasks. Despite
using resting-state data for brain state identification, we
found that subjects spent a significant portion of time
(39%) in State A, which matches the activation pattern com-
monly observed to be more active during a wide variety of
tasks than during rest. The possible functional relevance of
these activation patterns was characterized using a variety
of distinct task states as well as activation-pattern decoding
based on meta-analysis of thousands of fMRI studies.
Together, these results suggest that whole-brain activation
state configurations correspond between rest and tasks, indi-
cating that the human brain traverses a common activation-
pattern state space during rest and a variety of tasks.

Hierarchical organization of brain states

Using the dMVPA approach, we identified a pair of com-
peting anticorrelated states based on spontaneous activation

patterns. State A appears to be a ‘‘task-positive’’ state, with
high activation amplitudes in common task-active areas
such as sensorimotor and cognitive control networks (Cole
and Schneider, 2007; Corbetta and Shulman, 2002; Dosen-
bach et al., 2007; Raichle, 2010). State B appears to be a
‘‘task-negative’’ state, with high activation patterns mainly
in the DMN (Buckner et al., 2008; Raichle et al., 2001).
Breaking the individual brain states into more clusters, we
found 12 distinct brain states that are more functionally spe-
cific than State A and B, as indicated by associated terms
from the cognitive neuroscience literature. Qualitatively, the
activation pattern for each brain state includes highly activated
and/or deactivated brain regions that are affiliated with various
functional network definitions (Fig. 2, bottom), further sup-
porting the specificity of each brain state. However, detecting
the same states across unconstrained rest and task at lower
tiers of the hierarchy would be unlikely, given that any two
subjects are unlikely to enter the exact same mental state spon-
taneously. In addition, reverse inferences are more likely to be
problematic for lower level (more specific) states, since re-
verse inferences are often used inaccurately when making
overly broad generalizations about specific activations
(Poldrack, 2006). Therefore, we focused predominantly
on State A and State B, which were both present for 97
of the 98 subjects.

Relationship to resting-state FC

In this study, we emphasized the use of whole-brain acti-
vation patterns over alternative FC-based approaches (Allen
et al., 2014; Hutchison et al., 2013) for several reasons.
Mainly, by focusing on activation amplitudes, we were
able to directly compare the identified patterns with the
large fMRI activation amplitude literature (Laird et al.,
2009; Yarkoni et al., 2011). Also, characterizing activations
allowed us to directly test whether subjects were in active
task (externally oriented) brain states during ‘‘rest’’ periods,
which the results support (Fig. 6). We found that FC architec-
ture remains relatively unchanged across State A and State
B, despite significant differences in the underlying activation
patterns (Supplementary Fig. S3). This suggests that the ac-
tivation states identified here are only weakly (if at all) re-
lated to FC states (Allen et al., 2014; Hutchison et al.,
2013). However, the observed activation states appear to
be related to static resting-state FC networks (based on esti-
mating FC across entire resting-state runs). For instance, the
State B activation pattern is highly similar to the DMN
resting-state network, although a portion of the FPN is also
present. Several studies (Chen et al., 2015; Liu et al.,
2013) have investigated the relationship between static
resting-state networks and coactivation patterns more di-
rectly. These studies showed that coactivation patterns can
resemble common resting-state networks identified using tra-
ditional FC-based approaches, but some differences in the
coactivation patterns remained undetected in FC-based ana-
lyses. Together, these observations support the use of activa-
tion patterns to investigate brain state organization

There have been studies using alternative methodologies
for analyzing brain activity in the context of brain states.
For example, spectral decomposition has been used to iden-
tify unique stimulus-dependent brain state profiles for task
and rest and to investigate brain state dynamics for rest

Table 1. Percent Time in Each State for Each Task

Task type

Task blocks Intertask rest blocks

State A,
%

State B,
%

State A,
%

State B,
%

Reasoning 59 41 36 64
Emotion 52 48 40 60
Working memory 53 47 39 61
Gambling 57 43 38 62
Language 49 51 50 50
Social 55 45 41 59
Motor 53 47 40 60
Average 54 46 41 59

Percent of time in each state during task blocks and inter-rest rest
periods for each task.

ACTIVATION-PATTERN BRAIN STATES 437

D
ow

nl
oa

de
d 

by
 R

ut
ge

rs
 U

ni
ve

rs
ity

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
1/

19
/2

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



FIG. 5. Relationship between levels of the
brain state hierarchy. The top level of the
hierarchy (i.e., with no thresholding) is
depicted at top, with additional states lower
in the hierarchy with more stringent thresh-
olding. Each level was defined by removing
graph edges between the group prototype
states (e.g., 80% density means removing the
weakest 20% of edges) before running the
community detection algorithm. The lines
depict which state in the higher level that the
lower-level state was most associated with.
Specifically, a line indicates which higher-
level state was composed of the largest per-
centage of the same group-level prototypes
as the lower level state. Red links are asso-
ciated with State A (task-positive) at the top
level while blue links are associated with
State B (task-negative) at the top level. The
state levels below each of the states at 20%
density (level 5) corresponds with the state
levels in Figure 6. Color images available
online at www.liebertpub.com/brain
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FIG. 6. Decoding the states using Neurosynth. Each state at the 100% (A) and 20% (B) levels of the hierarchy illustrated in
Figure 5 were decoded using Neurosynth. Cognitive terms with the strongest associations with each state are depicted as word
clouds (top 50 terms with nonfunctional terms removed; see Materials and Methods section for details on term selection).
Terms with higher correlation values with the indicated brain state activation pattern are represented by larger font sizes
(with size normalized within each brain state’s word cloud). States B3–B10, colored in gray, did not survive the permutation
testing (see Supplementary Data for details). (C) Frequency of cognitive terms spread across the top 6 significant states. Only
four terms were present in more than two states (‘‘stimulus,’’ ‘‘movements,’’ ‘‘tactile,’’ ‘‘hand’’). Terms listed in the table are
terms that were present in multiple states (44/86 total terms). Color images available online at www.liebertpub.com/brain
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and task-active states (Billings et al., 2017). In another study,
a hidden Markov model was applied to resting-state data to
discover a temporal hierarchy of resting-state networks, in
which the networks are naturally organized into two FC
metastates (Vidaurre et al. 2017). In contrast, however, the
main innovation and strength of our dynamic approach is
the ability to detect brain state transitions at per-time-point
resolution (as seen in the temporal similarity matrices in
Fig. 2) and understanding of the functional context of the ac-
tivation pattern brain states by relating them to the task acti-
vation literature (Fig. 6).

Despite evidence that the present results are independent of
FC dynamics, these results appear to be related to observed
anticorrelation between DMN and task-positive network
time series according to (static) resting-state FC estimates
(Fox et al., 2005). That result has been recently questioned,
however, given that it is dependent on the global signal regres-
sion preprocessing step (Murphy et al., 2009). Importantly, we
did not use global signal regression here, such that DMN time
series were not anticorrelated with task-positive network time
series. This suggests that the observed spatial (not temporal,
which is used with FC) anticorrelation between DMN-
dominated and task-positive-dominated states are at least
somewhat independent of FC-based results. This may have
been possible because spatial anticorrelation does not imply
temporal anticorrelation (and vice versa). For example, two
networks can be activated above baseline (high spatial corre-
lation across time points) while being temporally anticorre-
lated at higher frequencies. It remains unclear exactly how
spatial activation dynamics relate to time series dynamics,
however, such that it will be important for future studies to
fully characterize the relationship between spatial and tempo-
ral brain activity correlations.

The present empirical results of an anticorrelation between
two brain states raise important theoretical implications in-
volving neural synchrony and oscillations. Specifically, neu-
ral synchrony and oscillations, commonly observed in
electrophysiological and EEG studies (Laumann et al.,
2017; Wang, 2010), have been utilized to help facilitate un-
derstanding of spontaneous neural activity during resting-
state fMRI (Deco et al., 2011; Fox and Raichle, 2007; Zuo
et al., 2010). Furthermore, it has been suggested that anticor-
relation patterns, similar to the present results, may have an
equally important role in understanding neural synchrony
(Fox et al., 2005). One might conceptualize State A and
State B as a pair of anticorrelated sinusoidal oscillations, in
which neural activity spontaneously flips back and forth dur-
ing resting state. However, modeling neural oscillations as
sinusoidal functions can be misleading, considering that
resting-state activity has been known to be both nonstation-
ary and nonsinusoidal (Cole and Voytek, 2018; Jones et al.,
2012). Nonetheless, it will be important for future studies to
fully characterize the functional relevance of anticorrelations
in understanding neural synchrony and oscillations.

Brain activation states common across task and rest

By using a data-driven approach across dozens of subjects,
we were able to obtain a comprehensive characterization (at
the spatiotemporal scale of multiband fMRI) of brain states
across rest and task. The results confirmed our hypothesis
that ‘‘task-positive’’ brain states occur regularly during rest

periods. We specifically found that subjects spent the major-
ity of rest in State B (61% of the time) but that a substantial
portion of rest was also spent in State A (39% of the time).
This ratio is reversed (as expected) during the seven tasks:
subjects were in State A more often (54% of the time on av-
erage) during task periods. The only exception was the lan-
guage task, where subjects were in State A only 49% of
the time during task periods. One potential explanation is
that during the ‘‘story’’ condition of the language task sub-
jects enter a self-reflective cognitive state consistent with
State B. This could be either due to the introspective nature
of stories or due to a lack of active task demands, which may
bias the percentages in favor of State B over State A during
task periods.

A popular account of resting periods is that mind wander-
ing is the primary mental phenomenon occurring during
those times. Past studies have linked increased activity in
the DMN, present in the State B activation pattern, with
mind wandering (Mason et al., 2007; Mittner et al., 2016).
However, it is likely that increased DMN activity is not the
only neural mechanism underlying mind wandering. The sig-
nificant presence of State A suggests that the brain could pos-
sibly be performing active tasks, even during ‘‘rest.’’ Several
studies have suggested personally relevant planning as one
such task, which involves activity in the autobiographical
memory system (Baird et al., 2011) and executive control
systems (Christoff et al., 2009; Smallwood et al., 2012).
Alternatively, common self-reported experiences of engag-
ing in problem solving during rest (Smallwood and Schooler,
2006) may also require increased activity in areas such as the
FPN. In addition, one might expect periodic activations in
motor and sensory systems that are largely involved with
passive attending to sensorimotor events (Fox et al., 2006).
These ‘‘task-positive’’ networks are present in the State A
activation pattern, suggesting that State A might be impor-
tant in a full explanation of mind wandering. However, fu-
ture work will be required to assess the specific tasks that
are performed during unconstrained resting-state mind wan-
dering, determining whether task-positive-like brain states
during rest actually correspond with task-positive mental
states. Also of note, State B was present for a substantial por-
tion of time during task performance. These results suggest
that there is a balance between these two states—with only
moderate shifting from this homeostatic baseline—regard-
less of outward behavioral state.

Limitations

The present study involves several limitations that will be
important for future studies to address. For instance, with
fMRI, the choice of a representative ‘‘baseline’’ for activa-
tion analyses is a complex issue. For standard task analyses,
this is often circumvented using intertask rest periods as the
baseline to compare across task conditions. This choice has
several issues, especially given that some regions are more
active during rest than task (Stark and Squire, 2001). Yet,
even this imperfect baseline choice is unavailable when in-
vestigating activations during resting states. Building on
common practice in the fMRI FC literature, we used each re-
gion’s (or voxel’s) time series mean as baseline. However,
differences in the choice of baseline may influence the ampli-
tude of the activations we observe, which in turn may affect
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the interpretability of activation patterns. Nonetheless, the
majority of our analyses and findings are rooted in
correlation-based methods, which are designed to remove
the influence of baseline (or linear scaling) shifts in signals.
Thus, while the choice of a valid baseline remains an impor-
tant problem to explore in fMRI research, its effect is likely
minimized by the analytical approaches used in this study.

In the proposed dMVPA approach, we correlated spatial
patterns between each individual timepoints to identify
unique brain states that occur during resting-state fMRI.
However, we did not measure the influence of temporal au-
tocorrelations induced by the hemodynamic response on
the timepoint-by-timepoint comparisons, which may be po-
tentially confounding. Based on this, we avoid exploring
state characteristics such as state dwell times and state tran-
sitions as these measures are more likely to be influenced by
hemodynamic-induced temporal autocorrelations. It will be
important for future research to assess the impact of
hemodynamic-induced temporal autocorrelations on our pro-
posed approach. For instance, future work could apply pre-
processing steps to minimize the effects of temporal
autocorrelations such as blind deconvolution (Havlicek
et al., 2011), which can account for hemodynamics to infer
underlying neural processes in time series.

Conclusion

We used a novel dMVPA approach combining insights
from multivariate activation methods as well as graph theo-
retical methods to identify and characterize activation-
pattern brain states during resting-state and task-state
fMRI. This provided three primary benefits. First, relative
to related M/EEG dMVPA approaches, the increased spatial
accuracy of fMRI facilitated identification of activation pat-
terns. Second, use of both resting-state and task-state data
across 98 subjects allowed for an especially comprehensive
identification of human brain activation states. Third, a
focus on fMRI activation amplitude patterns allowed us to
begin to interpret even spontaneous activations in terms of
specific functions, given the vast task fMRI activation liter-
ature and associated cognitive functions. Together, these
benefits revealed a hierarchical organization of brain states
with shared features across rest periods and task perfor-
mance. It will be important for future studies to build on
these results, improving our understanding of the many
brain states that are entered spontaneously and as a result
of cognitive task instructions along with their relationship
to ongoing brain network dynamics.
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